

Synthesis of Quasi-two-dimensional Carbon Nanostructures in Atmospheric Plasma of the Arc Discharge Using WC-Co Hard Alloy Waste as a Catalyst
https://doi.org/10.18412/1816-0395-2023-1-12-18
Abstract
The results of experimental studies on carbon nanomaterials production in the plasma of an arc discharge initiated in an open air were presented. The possibility of using waste carbide tools as a catalyst for obtaining quasi-two-dimensional carbon nanostructures by the proposed non-vacuum electric arc method was revealed. It was concluded that the process of synthesis of carbon nanostructures and electric arc processing of waste based on tungsten and cobalt are compatible.
About the Authors
A.Ya. PakRussian Federation
Cand. Sci. (Eng.), Head of Laboratory of power industry advanced materials
G.V. Arysheva
Russian Federation
Cand. Sci. (Eng.), Associate Professor
R.S. Martynov
Russian Federation
Post-graduate Student, Manufacturing Process Engineer of the 1st Category
A.I. Kokorina
Russian Federation
Student
References
1. Shemi A., Magumise A., Ndlovu S., Sacks N. Recycling of tungsten carbide scrap metal: A review of recycling methods and future prospects. Minerals Engineering. 2018. Vol. 122. P. 195—205.
2. Jung W.-G. Recovery of tungsten carbide from hard material sludge by oxidation and carbothermal reduction process. Journal of Industrial and Engineering Chemistry. 2014. Vol. 20. P. 2384—2388.
3. Neha A., Sharma N.N. Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diamond and Related Materials. 2014. Vol .50. P. 135—150.
4. Zhao J., Su Y., Yang Z., Wei L., Wang Y., Zhang Y. Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties. Carbon. 2013. Vol. 58. P. 92—98.
5. Su Y., Wei H., Li T., Geng H., Zhang Y. Low-cost synthesis of single-walled carbon nanotubes by low-pressure air arc discharge. Materials Research Bulletin. 2014. Vol. 50. P. 23—25.
6. Su Y., Zhou P., Zhao J., Yang Z., Zhang Y. Large-scale synthesis of few-walled carbon nanotubes by DC arc discharge in low-pressure flowing air. Materials Research Bulletin. 2013. Vol. 48. P. 3232—3235.
7. Kim H.H., Kim H.J. Preparation of carbon nanotubes by DC arc discharge process under reduced pressure in an air atmosphere. Materials Science and Engineering B. 2006. Vol. 133. P. 241—244.
8. Wang Z., Li N., Shi Z., Gu Z. Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air. Nanotechnology. 2010. Vol. 21. P. 1—4.
9. Guo G.F., Huang H., Xue F.H., Liu C.J., Yu H.T., Quan X., Dong X.L. Electrochemical hydrogen storage of the graphene sheets prepared by DC arc-discharge method. Surface & Coatings Technology. 2013. Vol. 228. P. 120—125.
10. Berkmans A.J., Jagannatham M., Reddy D.R., Haridoss P. Synthesis of thin bundled single walled carbon nanotubes and nanohorn hybrids by arc discharge technique in open air atmosphere. Diamond & Related Materials. 2015. Vol. 55. P. 12—15.
11. Lee H., Kim T., Cho D., Yoon S., Shin H., Lee H. Multi-wall carbon nanotubes by catalytic decomposition of carbon monoxide on Ni/MgO. International Journal of Applied Ceramic Technology. 2020. Vol. 17 (5). P. 2386—2392.
12. Charinpanitkul T., Kanjanaprapakul K., Leelaviwat N., Kurukitkoson N., Kim K. Effect of arc current on characteristics of nanocarbons prepared by cryogenic arc discharge method. Journal of Industrial and Engineering Chemistry. 2010. Vol. 16 (6). P. 912—917.
13. Yanli N., Li B., Zhang P., Shen S., Song X. Positive pressure assisted-arc discharge synthesis of single-walled carbon nanohorns. Materials Letters. 2016. Vol. 180. P. 313—316.
14. Song X., Liu Y., Zhu J. Synthesis of polyhedral graphite in a forced flow arc discharge. Materials Letters. 2007. Vol. 61. P. 4781—4783.
15. Charinpanitkul T., Soottitantawat A., Tonanon N., Tanthapanichakoon W. Single-step synthesis of nanocomposite of copper and carbon nanoparticles using arc discharge in liquid nitrogen. Materials Chemistry and Physics. 2009. Vol. 116. P. 125—128.
16. Zhang L., Zhua Y.B., Ge C.L., Wei C., Wang Q.L. The synthesis of carbon coils using catalyst arc discharge in an acetylene atmosphere. Solid State Communications. 2007. Vol. 142. P. 541—544.
17. Gang X., Shen-li J., Zong-qian S. The production of carbon nano-materials by arc discharge under water or liquid nitrogen. New Carbon Materials. 2007. Vol. 22 (4). P. 337—341.
18. Kosminska Y.O., Perekrestov V.I. Regularities of self-organization of technological conditions during plasmaarc synthesis of carbon nanotubes. Diamond and Related Materials. 2018. Vol. 85. P. 37—48.
19. Liang F., Shimizu T., Tanaka M., Choi S., Watanabe T. Selective preparation of polyhedral graphite particles and multi-wall carbon nanotubes by a transferred arc under atmospheric pressure. Diamond & Related Materials. 2012. Vol. 30. P. 70—76.
20. Okuno H., Palnichenko A., Despres J.-F., Issi J.-P., Charlier J.-C. Synthesis of graphite polyhedral crystals using a combustion flame method. Carbon. 2004. Vol. 43. P. 692—697.
21. Thinius S., Islam M. M., Bredow Th. Reconstruction of lowindex graphite surfaces. Surface Science. 2016. Vol. 649. P. 60—65.
22. Pak A.Ya., Shanenkov I.I., Mamontov G.Y., Kokorina A.I. Vacuumless synthesis of tungsten carbide in a self-shielding atmospheric plasma of DC arc discharge. International Journal of Refractory Metals & Hard Materials. 2020. Vol. 93. P. 105343.
23. Hou B.H., Wang Y.Y., Lü H.Y., Ning Q.L., Yan X., Liu D.S., Chen Y. Wang, J., Wang X., Wu X.L. Adjustable and pseudocapacitance-prompted Li storage via the controlled preparation of nanocomposites with 0D-2D carbon networks. Electrochimica Acta. 2018. Vol. 268. P. 323—331.
Review
For citations:
Pak A., Arysheva G., Martynov R., Kokorina A. Synthesis of Quasi-two-dimensional Carbon Nanostructures in Atmospheric Plasma of the Arc Discharge Using WC-Co Hard Alloy Waste as a Catalyst. Ecology and Industry of Russia. 2023;27(1):12-18. (In Russ.) https://doi.org/10.18412/1816-0395-2023-1-12-18