

Study of Chemical Composition of an Industrial Crop for Russia – Miscanthus × giganteus Harvested in 2019–2021
https://doi.org/10.18412/1816-0395-2022-11-55-59
Abstract
A chemical composition assessment was performed on a industrial crop in Russia, Miscanthus × giganteus harvested in 2019–2021. It was found that, regardless of the habitat, after the second year of vegetation, Miscanthus × giganteus has a cellulose content exceeding 50 %, which makes it a cellulose-based material. The positive impact of Miscanthus × giganteus on the environment was demonstrated. Cultivation of Miscanthus × giganteus regulates CO2 exchange, and its processing into cellulose, biofuels and high-tech products will reduce deforestation.
About the Authors
Yu.A. GismatulinaRussian Federation
Cand. Sci. (Eng.), Senior Research Fellow
A.N. Kortusov
Russian Federation
Lead Engineer
V.V. Budaeva
Russian Federation
Cand. Sci. (Chem.), Head of Laboratory
G.V. Sakovich
Russian Federation
Academician of RAS, Thesis Tutor
References
1. Wang C., Kong Y., Hu R., Zhou G. Miscanthus: A fast‐growing crop for environmental remediation and biofuel production. GCB Bioenergy. 2021. V. 13. Is. 1. P. 58—69. https://doi.org/10.1111/gcbb.12761.
2. Agostini A., Serra P., Giuntoli J., Martani E., Ferrarini A., Amaducci S. Biofuels from perennial energy crops on buffer strips: A win-win strategy. Journal of Cleaner Production. V. 297. 126703. https://doi.org/10.1016/j.jclepro.2021.126703.
3. Завизион Ю., Слюсарь Н., Коротаев В. Критерии выбора комплекса технических мероприятий снижения эмиссий на полигонах захоронения твердых коммунальных отходов. Экология и промышленность России. 2018. Т. 22. № 9. С. 52—57. https://doi.org/10.18412/1816-0395-2018-9-52-57.
4. Поздеева М.Г., Чиркова О.А., Седелкин В.М. Эффективный способ утилизации вторичного молочного сырья с выделением ценных компонентов и охраной окружающей среды. Экология и промышленность России. 2012. Сентябрь. С. 24—28. https://doi.org/10.18412/1816-0395-2012-9-24-28.
5. Капустянчик С.Ю., Якименко В.Н., Гисматулина Ю.А., Будаева В.В. Мискантус – перспективная энергетическая культура для промышленной переработки. Экология и промышленность России. 2021. Т. 25. № 3. С. 66—71. https://doi.org/10.18412/1816-0395-2021-3-66-71.
6. Van der Cruijsen K., Al Hassan M., van Erven G., Dolstra O., Trindade L.M. Breeding Targets to Improve Biomass Quality in Miscanthus. Molecules. 2021. V. 26. Is. 2. P. 254. https://doi.org/10.3390/molecules26020254.
7. Gushchina V.A., Volodkin A.A., Ostroborodova N.I. Prospects of using miscanthus giganteus as a fuel crop in forest-steppe of middle Volga. Plant Archives. 2021. Т. 21. № S1. С. 11—14. https://doi.org/10.51470/PLANTARCHIVES.2021. V21.S1.003.
8. Nakajima T., Yamada T., Anzoua K.G., Kokubo R., Noborio K. Carbon sequestration and yield performances of Miscanthus × giganteus and Miscanthus sinensis. Carbon Management. 2018. V. 9. Is. 4. P. 415—423. https://doi.org/10.1080/17583004.2018.1518106.
9. Danielewicz D., Surma-Ślusarska B. Miscanthus × giganteus stalks as a potential non-wood raw material for the pulp and paper industry. Influence of pulping and beating conditions on the fibre and paper properties. Industrial Crops & Products 2019. V. 141. № 111744. https://doi.org/10.1016/j.indcrop.2019.111744.
10. Hodgson E.M., Nowakowski D.J., Shield I., Riche A., Bridgwater A.V. Clifton-Brown J.C., Donnison I.S. Variation in Miscanthus chemical composition and implications for conversion by pyrolysis and thermo-chemical bio-refining for fuels and chemicals. Bioresource technology. 2011. V. 102. Is. 3. P. 3411—3418. https://doi.org/10.1016/j.biortech.2010.10.017.
11. Lee W.C., Kuan W.C. Miscanthus as cellulosic biomass for bioethanol production. Biotechnology Journal. 2015. V. 10, Is. 6. Р. 840—854. https://doi.org/10.1002/biot.201400704.
12. Arnoult S., Brancourt-Hulmel M. A review on miscanthus biomass production and composition for bioenergy use: genotypic and environmental variability and implications for breeding. BioEnergy Research. 2015. V. 8. Is. 2. P. 502—526. https://doi.org/10.1007/s12155-014-9524-7.
13. Wahid R., Nielsen S.F., Hernandez V.M., Ward A.J., Gislum R., Jørgensen U., Møller H.B. Methane production potential from Miscanthus sp.: Effect of harvesting time, genotypes and plant fractions. Biosystems Engineering. 2015. V. 133. P. 71—80. https://doi.org/10.1016/J.BIOSYSTEMSENG.2015.03.005.
14. Allison G.G., Morris C., Clifton-Brown J., Lister S.J., Donnison I.S. Genotypic variation in cell wall composition in a diverse set of 244 accessions of Miscanthus. Biomass and Bioenergy. 2011. V. 35. Is. 11. P. 4740—4747. https://doi.org/ 10.1016/j.biombioe.2011.10.008.
15. Van der Weijde T., Dolstra O., Visser R.G., Trindade L.M. Stability of cell wall composition and saccharification efficiency in Miscanthus across diverse environments. Frontiers in plant science. 2017. V. 7. 2004. https://doi.org/10.3389/fpls.2016.02004.
Review
For citations:
Gismatulina Yu., Kortusov A., Budaeva V., Sakovich G. Study of Chemical Composition of an Industrial Crop for Russia – Miscanthus × giganteus Harvested in 2019–2021. Ecology and Industry of Russia. 2022;26(11):55-59. (In Russ.) https://doi.org/10.18412/1816-0395-2022-11-55-59