Preview

Экология и промышленность России

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Улавливание CO2 от стационарных источников с последующей закачкой в подземные горизонты: обзор современных технологических решений

https://doi.org/10.18412/1816-0395-2021-10-64-71

Полный текст:

Аннотация

Представлен анализ современных технологических решений в области улавливания СО2 (абсорбция, адсорбция, мембранное и криогенное разделение, биологические процессы). Представлены способы устранения мешающего влияния серо- и азотсодержащих примесей при улавливании СО2 путем абсорбции. Установлена целесообразность использования диоксида углерода для повышения нефтеотдачи и приведены основные технологии закачки СО2 в подземные горизонты.

Об авторах

Е.С. Ширинкина
Пермский национальный исследовательский политехнический университет
Россия

канд. техн. наук, доцент



Н.Н. Слюсарь
Пермский национальный исследовательский политехнический университет
Россия

д-р техн. наук, профессор



В.Н. Коротаев
Пермский национальный исследовательский политехнический университет
Россия

д-р техн. наук, профессор



Список литературы

1. IPCC, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2014. [Электронный ресурс]. URL: https://www.ipcc.ch/site/assets/uploads/2018/02/ SYR_AR5_FINAL_full.pdf (дата обращения 14.04.2021).

2. United Nation Climate Change. The Paris Agreement. [Электронный ресурс]. URL: https://unfccc.int/processand-meetings/the-paris-agreement/the-paris-agreement (дата обращения: 14.04.2021).

3. Global Climate Change. Vital signs of the planet. Carbon dioxide. [Электронный ресурс]. URL: http://climate.nasa.gov/vital-signs/carbon-dioxide/ (дата обращения 20.05.2021).

4. Smith M.R., Myers S.S. Impact of anthropogenic CO2 emissions on global human nutrition. Nature Climate Change. 2018. No 8. Р. 834—839.

5. Valeh-e-Sheyda P., Barati J. Mass transfer performance of carbon dioxide absorption in a packed column using monoethanoleamine-glycerol as a hybrid solvent. Process Safety and Environmental Protection. 2021. Vol. 146. P. 54—68.

6. Techno-economic comparison of three technologies for pre-combustion CO2 capture from a lignite-fired IGCC. S. Roussanaly, M. Vitvarova, R. Anantharaman, D. Berstad, B. Hagen, J. Jakobsen, V. Novotny, G. Skaugen. Frontiers Chemical Science Engineering. 2020. № 14. Р. 436—452.

7. Bui M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., et al. Carbon capture and storage (CCS): the way forward. Energy Environmental Science. 2018. No 11. Р. 1062—1176.

8. Dashti A., Bahrololoomib A., Amirkhanic F., Mohammadi A.H. Estimation of CO2 adsorption in high capacity metal−organic frameworks: Applications to greenhouse gas control. Journal of CO2 Utilization. 2020. Vol. 41. Article 101256.

9. Li Ch., Yan F., Shen X., Qu F., Wang Y., Zhang Z. Highly efficient and stable PEI@Al2O3 adsorbents derived from coal fly ash for biogas upgrading. Chemical Engineering Journal. 2021. Vol. 409. Article 128117.

10. Varghese A.M., Karanikolos G.N. CO2 capture adsorbents functionalized by amine — bearing polymers: a review. International Journal of Greenhouse Gas Control. 2020. Vol. 96. Article 103005.

11. Current Trends and Future Developments on (Bio-) Membranes. Carbon Dioxide Separation/Capture by Using Membranes Chapter 15 — Membrane Considerations and Plant Design for Pre-Combustion CO2 Capture. 2018. P. 415—435.

12. Cann D., Font-Palma C., Willson P. Experimental analysis of CO2 frost front behaviour in moving packed beds for cryogenic CO2 capture. International Journal of Greenhouse Gas Control. 2021. Vol. 107. Article 103291.

13. Alami A.H., Alasad Sh., Ali M., Alshamsi M. Investigating algae for CO2 capture and accumulation and simultaneous production of biomass for biodiesel production. Science of The Total Environment. 2021. Vol. 759. Article 143529.

14. Wappel D., Khana A., Shallcrossa D., Joswiga S., Kentisha S., Stevensa G. The effect of SO2 on CO2 absorption in an aqueous potassium carbonate solvent. Energy Procedia. 2009. P. 125—131.

15. Cousins A ., Puxty G., Pearson P., Weiland R., Garg B., Li K., Verheyen V., Feron P. Simulation of an SO2 Tolerant Amine Based Post-combustion CO2 Capture Process. Chemical engineering transactions. 2018. Vol. 69. P. 817—822.

16. Puxty G., Chiao-Chien Wei S., Feron P., Meuleman E., Beyad Y., Burns R., Maeder M. A novel process concept for the capture of CO2 and SO2 using a single solvent and column. Energy Procedia. 2014. Vol. 63. P. 703—714.

17. Wanga M., Lawala A., Stephensonb P., Siddersb J., Ramshawa C., Yeunga H. Post-combustion CO2 Capture with Chemical Absorption: A State-of-the-art Review. Chemical Engineering Research and Design. 2011. Vol. 89. № 9. P. 1609—1624.

18. Abdollahia F., Craigb I. G.C; Neisianic M. CO2 Capture from Sulphur Recovery Unit Tail Gas by Shell Cansolv Technology. 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13. 2017. P. 6266—6271.

19. Kamkeng A.D.N., Wang M., Hu J., Du W., Qian F. Transformation technologies for CO2 utilization: Current status, challenges and future prospects. Chemical Engineering Journal. 2021. Vol. 409. Article 128138.

20. Núñez-López V., Moskal E. Potential of CO2-EOR for Near-Term Decarbonization. Frontiers in Climate. Negative emission technologies, 2019. [Электронный ресурс]. URL: https://www.frontiersin.org/articles/10.3389/fclim.2019.00005/full (дата обращения 16.04.2021).

21. CO2 Enhanced Oil Recovery. Institute for 21st Century Energy U.S. Chamber of Commerce 1615 H Street, NW Washington, DC 20062. [Электронный ресурс]. URL: https://www.globalenergyinstitute.org/sites/default/files/ 020174_EI21_EnhancedOilRecovery_final.pdf (дата обращения 18.04.2021).

22. Hawez H., Ahmed Zh. Enhanced Oil Recovery by CO2 Injection in Carbonate Reservoirs. Conference Paper in WIT Transactions on Ecology and the Environment. 2014. Vol. 186. P. 547—558.

23. Al-Shalabi E.W., Sepehrnoori K., Pope G. Modeling the Combined Effect of Injecting Low Salinity Water and Carbon Dioxide on Oil Recovery from Carbonate Cores. Society of Petroleum Engineers. International Petroleum Technology Conference 2014, IPTC 2014. Innovation and Collaboration: Keys to Affordable Energy. P. 1492—1517.

24. Yu Haiyang, Fu Wenrui, Zhang Youpeng, Lu Xin, Cheng Shiqing, Xie Qichao, Qu Xuefeng, Yang Weipeng, Lu Jun. Experimental study on EOR performance of CO2-based flooding methods on tight oil. Fuel. 2021. Vol. 290. Article 119988.

25. Esene C., Rezaei N., Aborig A., Zendehboudi S. Comprehensive review of carbonated water injection for enhanced oil recovery. Fuel. 2019. Vol. 237. P. 1086-1107.

26. Yu Haiyang, Xu Hang, Fu Wenrui, Lu Xin, Chen Zhewei, Qi Songchao, Wang Yang, Yang Weipeng, Lu Jun. Extraction of shale oil with supercritical CO2: Effects of number of fractures and injection pressure. Fuel. 2021. Vol. 285. Article 118977.

27. Ding Ming Chen, Wang Yefei, Liu Dexin, Wang Xia, Zhao Hailong, Chen Wuhua. Enhancing tight oil recovery using CO2 huff and puff injection: An experimental study of the influencing factors. Journal of Natural Gas Science and Engineering. 2021. Vol. 90. Article 103931.

28. Motie M., Assareh M. CO2 sequestration using carbonated water injection in depleted naturally fractured reservoirs: A simulation study. International Journal of Greenhouse Gas Control. 2020. Vol. 93. Article 102893.

29. Seyyedi M., Mahzari P., Sohrabi M. An integrated study of the dominant mechanism leading to improved oil recovery by carbonated water injection. Journal of Industrial and Engineering Chemistry. 2017. Vol. 45. P. 22—32.

30. Seyyedi M., Mahzari P., Sohrabi M. A comparative study of oil compositional variations during CO2 and carbonated water injection scenarios for EOR. Journal of Petroleum Science and Engineering. 2018. Vol. 164. P. 685—695.

31. Qu Xuefeng, Lei Qihong, He Youan, Chen Zhewei, Yu Haiyang. Experimental Investigation of the EOR Performances of Carbonated Water Injection in Tight Sandstone Oil Reservoirs. IOP Conf. Series: Earth and Environmental Science. 2018. Vol. 208. P. 1—6.


Для цитирования:


Ширинкина Е., Слюсарь Н., Коротаев В. Улавливание CO2 от стационарных источников с последующей закачкой в подземные горизонты: обзор современных технологических решений. Экология и промышленность России. 2021;25(10):64-71. https://doi.org/10.18412/1816-0395-2021-10-64-71

For citation:


Shirinkina E., Sliusar N., Korotaev V. CO2 Capturing from Stationary Sources with Following Use for Enhanced Oil Recovery: A Review Of Recent Technologies. Ecology and Industry of Russia. 2021;25(10):64-71. (In Russ.) https://doi.org/10.18412/1816-0395-2021-10-64-71

Просмотров: 77


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)