Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Soda Slurry Pits: the Problem of Waste Recovery and the Search for Microorganisms-Producers of Industrially Significant Enzymes

https://doi.org/10.18412/1816-0395-2021-10-20-25

Abstract

An overview of the ways of handling the waste of soda slurry pits, which correspond to the scheme "utilization – obtaining a useful product based on the recovered waste", is presented. As an indirect use of anthropogenic alkaline media with a high level of mineralization, the isolation of microorganisms-producers of industrially significant enzymes, which have unique properties: increased resistance to alkaline media and a high level of mineralization is considered. The results of our own studies of biodiversity of the current and old map of JSC "Bereznikovsky Soda Plant" by the method of metagenomic sequencing are presented, the Shannon and Simpson index, reflecting microbial diversity, uniformity and degree of dominance, are determined. Bacterial cultures with amylolytic, lipolytic, proteolytic and cellulolytic activities were isolated, and the predominance of lipolytic bacteria in soda sludge and technogenic surface formations of the coastal zone, proteolytics on the soil surface of the old slurry pit site and cellulosolytics at a depth of 10 cm was shown.

About the Authors

Yu.G. Maksimova
Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences – a branch of the Federal State Budgetary Institution of Science of the Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Dr. Sci. (Biol.), Leading Research Fellow



A.V. Shilova
Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences – a branch of the Federal State Budgetary Institution of Science of the Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Post-graduate Student



V.A. Shchetko
State Scientific Institution "Institute of Microbiology of the National Academy of Sciences of Belarus"
Belarus

Cand. Sci. (Biol.), Head of Department



A.Yu. Maksimov
Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences – a branch of the Federal State Budgetary Institution of Science of the Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Biol.), Associate Professor, Senior Research Fellow



References

1. Калинина Л.В., Рудакова Л.В. Снижение токсичных свойств шламов содового производства с последующей их утилизацией. Известия Томского политехнического университета. Инжиниринг георесурсов. 2018. Т. 329. №6. C. 85—96.

2. Kalwasińska A., Felföldi T., Szab A.J., DejaSikora E., Kosobucki P., Walczak M. Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime. Antonie van Leeuwenhoek. 2017. V. 110. №7. Р. 945—962.

3. Сабитов К.Б., Воронин А.В. Перспективы использования твердых отходов производства кальцинированной соды АО "БСК" в качестве карбонатной составляющей сырья для производства цемента. Вестник Академии наук РБ. 2016. Т. 21. № 3(83). С. 86—95.

4. Крепышева И.В., Рудакова Л.В., Козлов С.Г. Физико-химические и токсикологические свойства шлама содового производства. Горный информационно-аналитический бюллетень (научно-технический журнал). 2015. №1. С. 335—342.

5. Шатов А.А., Кутырёв А.С., Бадертдинов Р.Н. Некоторые пути утилизации отходов производства соды. Башкирский экологический вестник. 2013. № 3—4(36—37). С. 8—16.

6. Калинина Л.В. Наилучшие доступные технологии утилизации шламов содового производства. Экология и промышленность России. 2013. Ноябрь. С. 43—47.

7. Блинов С.М., Максимович Н.Г., Найданова Н.Ф., Шлыков В.Г., Потапов С.С. Минералогические основы утилизации отходов ОАО "Березниковский содовый завод". Минералогия техногенеза. 2003. С. 51—55.

8. Liu X., Kokare C. Chapter 11. Microbial enzymes of use in industry. In: Biotechnology of microbial enzymes: Production, biocatalysis and industrial applications. G. Brahmachari (Ed.). Elsevier Inc., 2017. P. 267—298.

9. Nogi Y., Takami H., Horikoshi K. Characterization of alkaliphilic Bacillus strains used in industry: Proposal of five novel species. International Journal of Systematic and Evolutionary Microbiology. 2005. V. 55. P. 2309—2315.

10. Sarethy I.P., Saxena Y., Kapoor A., Sharma M., Sharma S.K., Gupta V., Gupta S. Alkaliphilic bacteria: Applications in industrial biotechnology. Journal of Industrial Microbiology and Biotechnology. 2011. V. 38. P. 769—790.

11. Aino K., Hirota K., Matsuno T., Morita N., Nodasaka Y., Fujiwara T., Matsuyama H., Yoshimune K., Yumoto I. Bacillus polygoni sp. nov., a moderately halophilic, non-motile obligate alkaliphile isolated from indigo balls. International Journal of Systematic and Evolutionary Microbiology. 2008. V. 58. P. 120—124.

12. De Graaff M., Bijmans M.F.M., Abbas B., Euverink G.-J.W., Muyzer G., Janssen A.J.H. Biological treatment of refinery spent caustics under halo-alkaline conditions. Bioresource Technology. 2011. V. 102. P. 7257—7264.

13. Borkar S. Chapter 4 Alkaliphilic bacteria: diversity, physiology and industrial applications. In: Bioprospects of Coastal Eubacteria, S. Borkar (ed.). Switzerland: Springer International Publishing, 2015. P. 59—83.

14. Ali S.S., Habib I., Riaz T. Screening and characterization of alkaliphilic bacteria from industrial effluents. Punjab Univ. J. Zool. 2009. V. 24. № 1—2. P. 49—60.

15. Mokashe N., Chaudhari B., Patil U. Operative utility of salt-stable proteases of halophilic and halotolerant bacteria in the biotechnology sector. International Journal of Biological Macromolecules. 2018. V. 117. P. 493—522.

16. Kevbrin V.V. Isolation and cultivation of alkaliphiles. In: Advances in Biochemical Engineering. Biotechnology. Berlin, Heidelberg, Springer, 2019. P. 1—32.

17. Ren L., Han Y., Yang S., Tan X., Wang J., Zhao X., Fan J., Dong T., Zhou Z. Isolation, identification and primary application of bacteria from putrid alkaline silica sol. Front. Chem. Sci. Eng. 2014. V. 8. Р. 330—339.

18. Roadcap G.S., Sanford R.A., Jin Q., Pardinas J.R., Bethke C.M. Extremely alkaline (pH > 12) ground water hosts diverse microbial community. Ground Water. 2006. V. 44. № 4. Р. 511—517.

19. Nishita M., Hirota K., Matsuyama H., Yumoto I. Development of media to accelerate the isolation of indigo-reducing bacteria, which are difficult to isolate using conventional media. World J Microbiol Biotechnol. 2017. 33:133.

20. Aino K., Hirota K., Okamoto T., Tu Z., Matsuyama H., Yumoto I. Microbial communities associated with indigo fermentation that thrive in anaerobic alkaline environments. Front Microbiol. 2018. 9:2196.

21. Шилова А.В., Максимов А.Ю., Максимова Ю.Г. Изменения микробиома как индикатор восстановления природных сред содового шламохранилища АО "Березниковский содовый завод". Вода и экология: проблемы и решения. 2020. № 1 (81). С. 84—94.

22. Чернов Т.И., Тхакахова А.К., Кутовая О.В. Оценка различных индексов разнообразия для характеристики почвенного прокариотного сообщества по данным метагеномного анализа. Почвоведение. 2015. № 4.С. 462—468.


Review

For citations:


Maksimova Yu., Shilova A., Shchetko V., Maksimov A. Soda Slurry Pits: the Problem of Waste Recovery and the Search for Microorganisms-Producers of Industrially Significant Enzymes. Ecology and Industry of Russia. 2021;25(10):20-25. (In Russ.) https://doi.org/10.18412/1816-0395-2021-10-20-25

Views: 358


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)