Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Application of Bipolar Electrodialysis with Modified Membranes for the Purification of Chromic Wastewater from Galvanic Production

https://doi.org/10.18412/1816-0395-2021-10-4-9

Abstract

The overview of the treatment methods for chromic wastewaters has been provided. The option for removing hexavalent chromic from wastewater for improving reagent treatment method has been presented. The electromembrane process of acid and base from sodium sulfate obtaining, secondary waste treatment of chromic wastewaters after reagent treatment method by electrodialyzer-synthesizer equipped with a three-chambered unit cell has been studied. The apparatus used both industrially produced bipolar membranes and its prototypes obtained by modified industrial membranes by chromium hydroxide. It has showed that the modified samples allow to obtain a higher yield of acid and alkali, as well as to reduce the energy consumption per unit of the target product. A principal process diagram of the chromic wastewaters purification from galvanic production by implementing electrodialysis at the stage of processing stage of sodium sulfate solution has been presented.

About the Authors

S.I. Niftaliev
Voronezh State University of Engineering Technology
Russian Federation

Dr. Sci. (Chem.), Head of Department



O.A. Kozaderova
Voronezh State University of Engineering Technology
Russian Federation

Dr. Sci. (Chem.), Associate Professor



K.B. Kim
Voronezh State University of Engineering Technology
Russian Federation

Cand. Sci. (Chem.), Associate Professor



References

1. Vareda J.P., Valente A.J.M., Durгes L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J. Environ Manage. 2019. P. 101—118.

2. Guidelines for drinking-water quality - 4th ed. WHO Library Cataloguing-in-Publication Data. 2011. 564 p.

3. Wang Y., Li J., Jin Y., Chen M., Ma R. Extraction of chromium (III) from aqueous waste solution in a novel rotor-stator spinning disc reactor. Chemical Engineering and Processing — Process Intensification. 2020. V.149. P. 1—6.

4. Валинурова Э.Р., Гимаева А.Р., Кудашева Ф.Х. Исследование процесса сорбции ионов хрома (III) и хрома (VI) из воды активированными углеродными адсорбентами. Вестник Башкирского Университета. 2009. Т.14. № 32. С. 385—388.

5. Yahya M.D., Obayomi K.S., Abdulkadir M.B., Iyaka Y.A., Olugbenga A.G. Characterization of cobalt ferrite-supported activated carbon for removal of chromium and lead ions from tannery wastewater via adsorption equilibrium. Water Science and Engineering. 2020. V. 13. T. 3. P. 202—213.

6. Method and Apparatus for Removing Metal From Waste Water: 20100065502 США; 18.03.10.

7. Hsini A., Benafqir M., Naciri Y., Laabd M., Bouziani A., Ezzahery M., Lakhmiri R., El Alem N., Albourine A. Synthesis of an arginine-functionalized polyaniline-FeOOH composite with high removal performance of hexavalent chromium ions from water: Adsorption behavior, regeneration and process capability studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 617.

8. Masindi V., Foteinis S., Tekere M., Ramakokovhu M.M. Facile synthesis of halloysite-bentonite clay/magnesite nanocomposite and its application for the removal of chromium ions: Adsorption and precipitation process. Materials Today: Proceedings. 2021. V. 38. P. 1088—1101.

9. Pavithra S., Thandapani G., Sugashini S., Sudha P.N., Hus sein H., Alrefaei A.F., Almutairi M.H. Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr(VI) and Cu(II) ions from synthetic wastewater. Chemosphere. 2021. V. 271.

10. Yang X., Zhao Z., Yu Y., Shimizu K., Zhang Z., Lei Z., Lee D.-J. Enhanced biosorption of Cr(VI) from synthetic wastewater using algal-bacterial aerobic granular sludge: Batch experiments, kinetics and mechanisms. Separation and Purification Technology. 2020. V. 251.

11. Воропанова Л.А., Гагиева Ф.А., Гагиева З.А. Очистка сточных вод кожевенных, травильных и гальванических производств от ионов хрома сорбцией на анионите марки АМП и смеси анионита марки АМП и катионита марки КУ-2. Экология и промышленность России. 2016. Т. 20. № 7.

12. Nam A., Choi U.S., Yun S.-T., Choi J.-W., Park J.-A., Lee S.-H. Evaluation of amine-functionalized acrylic ion exchange fiber for chromium (VI) removal using flow-through experiments modeling and real wastewater. Journal of Industrial and Engineering Chemistry. 2018 V. 66. P. 187—195.

13. Alvarado L., Torres I.R., Chen A. Integration of ion ex change and electrodeionization as a new approach for the continuous treatment of hexavalent chromium wastewater. Separation and Purification Technology.2013. V. 105. P. 55—62.

14. Baysak F.K. A novel approach to Chromium rejection from sewage wastewater by pervaporation. Journal of Molecular Structure. 2021. V. 1233.

15. Santos C.S.L., Reis M.H.M., Cardoso V.L., Resende M.M. Electrodialysis for removal of chromium (VI) from effluent: Analysis of concentrated solution saturation. Journal of Environmental Chemical Engineering. 2019. V. 7. T. 5.

16. Wu X., Zhu H., Liu Y., Chen R., Qian Q., der Bruggen B.V. Cr(III) recovery in form of Na2CrO4 from aqueous solution using improved bipolar membrane electrodialysis. Journal of Membrane Science. 2020. V. 604.

17. Sadyrbaeva T. Zh. Removal of chromium(VI) from aqueous solutions using a novel hybrid liquid membrane – electrodialysis process. Chemical Engineering and Processing: Process Intensification. 2016. V. 99. P. 183—191.

18. Ma W., Gao J., Chen Z., Hu J., Xin G., Pan Y., Zhang Z., Tan D. A new method of Cr(VI) reduction using SiC doped carbon electrode and Cr(III) recovery by hydrothermal precipitation. Col loids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 610.

19. Zewail T.M., Yousef N.S. Chromium ions (Cr6+ & Cr3+) removal from synthetic wastewater by electrocoagulation using vertical expanded Fe anode. Journal of Electroanalytical Chemistry. 2014. V. 735. P. 123—128.

20. Перелыгина Ю.П., Зорькина О.В., Рашевская И.В., Николаева С.Н. Реагентная очистка сточных вод и утилизация отработанных растворов и осадков гальванических производств : учеб. пособие. Пенза, Изд-во ПГУ. 2013. 80 с.

21. Rahimi M., Pourmortazavi S.M., Zandavar H., Mirsadeghi S. Recyclable methodology over bimetallic zero-valent Mg:Zn com position for hexavalent chromium remediation via batch and flow systems in industrial wastewater: an experimental design. Journal of Materials Research and Technology. 2021. V. 11. P. 1—18.

22. Гошу Й.В., Царев Ю.В., Костров В.В. Исследование процесса восстановления хрома (VI) в присутствии добавок солей металлов. Журнал прикладной химии. 2007. Т 80. № 12. С. 1946–1949.

23. Мельников С.С., Шаповалова О.В., Шельдешов Н.В., Заболоцкий В.И. Влияние гидроксидов d металлов на диссоциацию воды в биполярных мембранах. Мембраны и мембранные технологии. 2011. Т. 1. № 2. С. 149—156.

24. Козадерова О.А. Электрохимические характеристики биполярной мембраны МБ-2, объемно модифицированной наноразмерным гидроксидом хрома (III). Российские нанотехнологии. 2018. Т. 13. № 9—10. С. 58—64.

25. Цыбульская О.Н., Ксеник Т.В., Кисель А.А., Юдаков А.А. и др. Обезвреживание хромсодержащих отходов гальванического производства. Вестник Дальневосточного отделения Российской академии наук. 2015. № 4 (182). С. 104—112.


Review

For citations:


Niftaliev S., Kozaderova O., Kim K. Application of Bipolar Electrodialysis with Modified Membranes for the Purification of Chromic Wastewater from Galvanic Production. Ecology and Industry of Russia. 2021;25(10):4-9. (In Russ.) https://doi.org/10.18412/1816-0395-2021-10-4-9

Views: 328


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)