Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Polymer Composites Based on Polyvinyl Chloride and Biomass of Fallen Leaves

https://doi.org/10.18412/1816-0395-2021-5-22-27

Abstract

The results of assessing the possibilities of using of biomass of fallen leaves as a filler of composite polymer materials with a polyvinyl chloride polymer matrix are presented. Samples of composites with biomass of fallen leaves we obtained by extrusion and hot pressing method. The dependences of their physical and mechanical properties on the content of the filler were determined. These de-pendencies are given in the form of polynomial of the second degree. In terms of most physical and mechanical properties (with the exception of impact strength) composites with biomass of fallen leaves are superior to samples of wood-polymer composites with wood flour with a similar degree of filling. Made of a comparison of the effectiveness of three different plasticizers: dimethyl phthalate, dibutyl phthalate and dioctyl therephthalate. The most promising is the use of dibutyl phthalate as a plasticizer. It has been shown that the biomass of fallen leaves is an effective replacement for wood flour in the production of wood-polymer composite materials with a s fr.

About the Authors

P.S. Zakharov
Ural State Forestry Engineering University
Russian Federation

Graduate Student



A.D. Kudryavtsev
Ural State Forestry Engineering University
Russian Federation

Graduate Student



A.E. Shkuro
Ural State Forestry Engineering University
Russian Federation

Cand. Sci. (Eng.), Associate Professor



V.V. Gluhih
Ural State Forestry Engineering University
Russian Federation

Dr. Sci. (Eng.), Professor



O.F. Shishlov
Ural State Forestry Engineering University
Russian Federation

Dr. Sci. (Eng.), Professor



References

1. Безруких А.Д., Веденский А.С. Исследование влияния на городскую среду опавших листьев. Юный ученый. 2017. № 4. С. 84—85.

2. Передий С. Пеллеты и брикеты из опавших листьев. ЛесПромИнформ. 2018. № 8. С. 138.

3. Исаева Е.В, Рязанова Т.В., Гаврилова Л.В. Групповой химический состав листьев тополя. Sciences of Europe. 2016. № 8. С. 116—121.

4. Лесиовская Е.Е., Беленовская Л.М. Растительные ресурсы России. М., Товарищество научных изданий КМК, 2010. С. 336.

5. Ершова А.С., Савиновских А.В., Артемов А.В., Бурындин В.Г. Использование отходов лесопарковых зон для получения пластиков без добавления связующих веществ. Леса России и хозяйство в них. 2019. № 2. С. 62—70.

6. Исаева Е.В., Ложкина Г.А., Рязанова Т.В. Влияние различных факторов на процесс экстракции почек тополя бальзамического. Химия растительного сырья. 2007. № 2. С. 51—54.

7. Чачина С.Б., Двоян А.В. Получение биоэтанола из органического сырья. Омский научный вестник. 2014. № 2. С. 224—228.

8. Cinthya H.S. Steam-exploded fibers of almond tree leaves as reinforcement of novel recycled polypropylene composites. Journal of Materials Research and Technology. 2020. Vol. 9. P. 11791—11800.

9. Murali B., Vijaya Ramnath B., Chandramohan D. Mechanical properties of boehmeria nivea reinforced polymer composite. Materialstoday: proceedings. 2019. Vol. 16. P. 883—888.

10. Yadav K.J., Vedrtnam A., Gunwant D. Experimental and numerical study on mechanical behavior and resistance to natural weathering of sugarcane leave reinforced polymer composite. Construction and Building Materials. 2020. Vol. 262. P. 120785.

11. Scaffaro R., Maio A., Lopresti F. Physical properties of green composites based on poly-lactic acid or Mater-Bi® filled with Posidonia Oceanica leaves. Composites Part A: Applied Science and Manufacturing. 2018. Vol. 112. P. 315—327.

12. Scaffaro R., Lopresti F., Botta L. PLA based biocomposites reinforced with Posidonia oceanica leaves. Composites Part B: Engineering. 2018. Vol. 139. P. 1—11.

13. Madhu P., Sanjay M.R., Pradeep S. Characterization of cellulosic fibre from Phoenix pusilla leaves as potential reinforcement for polymeric composites. Journal of Materials Research and Technology. 2019. Vol. 8. P. 2597—2604.

14. Danasabe B., Yaro S.A., Yawas D.S. Micro-structural and mechanical characterization of doum-palm leaves particulate reinforced PVC composite as piping materials. Alexandria Engineering Journal. 2018. Vol. 57. P. 2929—2937.

15. Bunhussain M.A., El-Tonsy M.M. Palm leave and plastic waste wood composite for out-door structures. Construction and Building Materials. 2013. Vol. 47. P. 1431—1435.

16. Kharrat F., Khlif M., Hilliou L. Minimally processed date palm (Phoenix dactylifera L.) leaves as natural fillers and processing aids in poly(lactic acid) composites designed for the extrusion film blowing of thin packages. Industrial Crops and Products. 2020. Vol. 154. P. 112637.

17. Dubey N., Agnihotri G. Flexural and Impact Properties of Midrib of Coconut Palm Leaves Reinforced Polyester. Materialstoday: proceedings. 2017. Vol. 4. P. 3422—3430.

18. Leao A.L., Souza S.F., Cherian B.M. Pineapple leaf fibers for composites and cellulose. Mol. Cryst. Liq. Cryst. 2010. Vol. 522. P. 36—41.

19. Шкуро А.Е., Глухих В.В., Кривоногов П.С., Стоянов О.В. Наполнители аграрного происхождения для древеснополимерных композитов (обзор). Вестник Казанского технологического университета. 2014. № 21. С. 160—163.

20. Вадзинский Р. Статистические вычисления в среде Excel. СПб., Питер, 2008. 608 с.


Review

For citations:


Zakharov P., Kudryavtsev A., Shkuro A., Gluhih V., Shishlov O. Polymer Composites Based on Polyvinyl Chloride and Biomass of Fallen Leaves. Ecology and Industry of Russia. 2021;25(5):22-27. (In Russ.) https://doi.org/10.18412/1816-0395-2021-5-22-27

Views: 540


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)