Preview

Экология и промышленность России

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Развитие предиктивных систем контроля выбросов загрязняющих веществ

https://doi.org/10.18412/1816-0395-2020-10-43-49

Полный текст:

Аннотация

Представлен обзор мирового опыта разработки и внедрения систем контроля выбросов промышленных предприятий на основе математических моделей. Проанализированы основные проблемы применения таких систем, выявлены их преимущества и недостатки. Показано, что на российских предприятиях возможно внедрение предиктивных систем контроля выбросов на начальных этапах перехода на НДТ в рамках интеграции цифровых технологий в производственные процессы.

Об авторах

В.А. Грачев
Центр глобальной экологии, МГУ им. М.В. Ломоносова
Россия
д-р техн. наук, чл.-корр. РАН


Д.О. Скобелев
Научно-исследовательский институт "Центр экологической промышленной политики"
Россия
канд. экон. наук


А.Ю. Попов
Научно-исследовательский институт "Центр экологической промышленной политики"
Россия
канд. хим. наук


Список литературы

1. Hung W.S.Y. An experimentally verified NOx emission model for gas turbine combustors. In: Proceedings of the International Gas Turbine Conference & Products Show, 2-6 March 1975, Houston, Texas. ASME, USA, 1975. P. 1—11.

2. Зельдович Я.Б., Садовников П.Я., Франк-Каменецкий Д.А. Окисление азота при горении. Издательство АН СССР, Москва-Ленинград , 1947. 150 с.

3. Hung W.S.Y., Langenbacher F. PEMS: Monitoring NOx emissions from gas turbines. In: International Gas Turbine and Aeroengine Congress and Exposition, 5-8 June 1995, Houston, Texas. ASME, USA, 1995. P. 1—9.

4. Kamas J., Keeler J. Predictive emissions monitoring systems: A low-cost alternative for emissions monitoring. In: IEEE Cement Industry Technical Conference, 37th Conference Record, 4-9 June 1995, San Juan, Puerto Rico. Institute of Electrical and Electronics Engineers, USA, 1995. P. 497—510.

5. Faravelli T.,. Bua L., Frassoldati A., Antifora A., Tognotti L., Ranzi E. A new procedure for predicting NOx emissions from furnaces. Computers and Chemical Engineering. 2001. Vol. 25. Iss. 4—6. P. 613—618. doi.org/10.1016/S0098-1354(01)00641-X.

6. Chien T.W., Chu H., Hsu W.C., Tseng T.K., Hsu C.H., Chen K.Y. A feasibility study on the predictive emission monitoring system applied to the Hsinta power plant of Taiwan Power Company. Journal of the Air & Waste Management Association. 2003. Vol. 53. No. 8. P. 1022—1028. doi.org/10.1080/ 10473289.2003.10466241.

7. Ross C.P., Russell D., Mino J. An Effective PEMS Alternative to CEMS for Quantifying Glass Furnace NOx Emissions. A Collection of Papers Presented at the 60th Conference on Glass Problems: Ceramic Engineering and Science Proceedings. 2000. Vol. 21. P.153—167. doi.org/10.1002/9780470294598.ch11.

8. Tan P., Xia J., Zhang C., Fang Q., Chen G. Modeling and reduction of NOx emissions for a 700 MW coal-fired boiler with the advanced machine learning method. Energy. 2016. Vol. 94. P. 672—679. doi.org/10.1016/j.energy.2015.11.020.

9. Zhou H., Zhao J.P., Zheng L.G., Wang C.L., Cen K.F. Modeling NOx emissions from coal-fired utility boilers using support vector regression with ant colony optimization. Engineering Applications of Artificial Intelligence. 2012. Vol. 25. No.1. P. 147—158. doi.org.10.1016/j.engappai.2011.08.005

10. Tang Z., Wu X., Cao S, Yang M. Modeling of the Boiler NOx Emission with a Data Driven Algorithm. Journal. Of Chemical Engineering of Japan. 2018. Vol. 51. No. 8. P. 695—703. doi.org/10.1252/jcej.17we335.

11. Ahmed F., Kim J.K., Khan A.U., Park H.Y., Yeo Y.K. A Fast Converging and Consistent Teaching-Learning-Self-Study Algorithm for Optimization: A Case Study of Tuning of LSSVM Parameters for the Prediction of NOx Emissions from a Tangentially Fired Pulverized Coal Boiler. Journal. of Chemical Engineering of Japan. 2017. Vol. 50. No. 4. P. 273—290. doi.org/10.1252/jcej.16we002.

12. Wang F., Ma S., Wang H., Li Y., Zhang J. Prediction of NOx emission for coal-fired boilers based on deep belief network. Control Engineering Practice. 2018. Vol. 80. P. 26—35. doi.org/10.1016/j.conengprac.2018.08.003.

13. Li G.-Q., Qi X.-B., Chan K.C.C., Chen B. Deep Bidirectional Learning Machine for Predicting NOx Emissions and Boiler Efficiency from a Coal-Fired Boiler. Energy Fuels. 2017. Vol. 31. No. 10. P. 11471—11480. doi.org/10.1021/acs.energyfuels.7b01415.

14. Yang G., Wang Y., Li X. Prediction of the NOx emissions from thermal power plant using long-short term memory neural network. Energy. February 2020. Vol. 192(С). P. 116597—116655. doi.org/10.1016/j.energy.2019.116597.

15. Korpela T., Kumpulainen P., Majanne Y., Hдyrinen A., Lautala P. Indirect NOx emission monitoring in natural gas fired boilers. Control Engineering Practice. 2017. Vol. 65. P. 11‒25. doi.org/10.1016/j.conengprac.2017.04.013.

16. U.S. Government Printing Office. U.S. Code of Federal Regulations. Title 40. Protection of Environment. URL: https://www.govinfo.gov/app/collection/cfr/2019/title40.

17. Environmental Protection Agency. U.S. Performance specification 16 - specifications and test procedures for predictive emission monitoring systems in stationary sources. US EPA, Washington, 2017. 15 p.

18. British Standards Institution. BS PD CEN/TS 17198:2018 Stationary source emissions. Predictive Emission Monitoring Systems (PEMS). Applicability, execution and quality assurance. BSI, London, 2018. 54 p.

19. European Parliament. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Union. L 334. 2010. P. 17—119.

20. European Commission. Commission Implementing Decision (EU) 2017/1442 of 31 July 2017 establishing best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for large combustion plants. Official Journal of the European Union. L212. 2017. P. 1—82.

21. NSW Environment Protection Authority. Load Calculation Protocol for use by holders of NSW environment protection licences when calculating assessable pollutant loads. Department of Environment and Climate Change NSW. Sydney, 2008. 74 p.

22. Khaqan A. PEMS: The low-cost alternative to emissions monitoring. Chemical Engineering. 1 April 2011. P. 2—5.

23. Swanson B.G., Lawrence P. An alternative approach to continuous compliance monitoring and turbine plant optimization using a PEMS (Predictive Emission Monitoring System). 18th Symposium of the Industrial Application of Gas Turbines Committee. Banff, 19-21 October 2009, Alberta, Canada. P. 1—11.

24. Bonavita N., Ciarlo G. Inferential sensors for emission monitoring: an industrial perspective. Frontiers in Environmental Engineering. 2014. V. 3. P. 21—28.

25. Ciarlo G., Bonavita N. Fulfilling Evolving End-Users Expectations for Site-Wide Emission Monitoring: the Role of PEMS. 12th International Conference and Exhibition on Emission Monitoring, 18—20 May 2016, Lisbon, Portugal. P. 1—12.

26. Cheng A.M., Hagen G.F. An accurate predictive emissions monitoring system (PEMS) for an ethylene furnace. Environmental Progress. 1996. V. 15. Iss. 1. P. 19—27. doi.org/10.1002/ep.670150115.


Для цитирования:


Грачев В., Скобелев Д., Попов А. Развитие предиктивных систем контроля выбросов загрязняющих веществ. Экология и промышленность России. 2020;24(10):43-49. https://doi.org/10.18412/1816-0395-2020-10-43-49

For citation:


Grachev V., Skobelev D., Popov A. Development of Рredictive Еmission Мonitoring Systems. Ecology and Industry of Russia. 2020;24(10):43-49. (In Russ.) https://doi.org/10.18412/1816-0395-2020-10-43-49

Просмотров: 150


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)