

Methodology for Reliable Assessment of the Water Quality. II. General Probabilistic Nature of Water Composition Standardization and Assessment
https://doi.org/10.18412/1816-0395-2020-9-58-63
Abstract
The article continues a series of works devoted to two closely related aspects of water quality management in natural objects and water utilization – ensuring the reliability of water quality assessment and optimizing of its standardization. It was shown that the risks of false conclusions equally arise both when setting a standard – the maximum permissible concentration of pollutants in a water body, and when monitoring compliance with established requirements. It was demonstrated on specific examples that in both cases, depending on the method of the research error registration, opposite conclusions concerning the water quality can be obtained. To obtain scientifically based results, a risk-oriented approach, as well as the statistical methods that use loss functions in various modifications are required. A solution to the problem of assessing the reliability of determining the water quality class on the example of a typical challenge of industrial water use was provided, recommendations on the arbitration method in connection with the assessment of the correctness of the water attributing to restrictive standards were also proposed.
About the Authors
V.I. Danilov-DanilyanRussian Federation
Dr. Sci. (Eng.), Corresponding Member RAS, Director
O.M. Rosenthal
Russian Federation
Dr. Sci. (Eng.), Chief Research Fellow
References
1. Данилов-Данильян В.И., Розенталь О.М. Методология достоверной оценки качества воды. I. Нормирование и оценивание с позиций риск-ориентированного подхода. Экология и промышленность. 2020. Т. 24. № 8. С. 60—65.
2. International Standard ISO 31000:2018 "Risk management - Guidelines". [Электронный ресурс]. URL: https://www.iso.org/standard/65694.html (дата обращения 26.05.2020).
3. Chavas J.-P. Risk Analysis in Theory and Practice. USA, Academic Press, 2004. 247 P.
4. Taguchi G. Quality engineering in Japan. Commun. Statist. Theor. Mech. 1985. Vol. 14. Iss. 11. P. 2785—2801.
5. Данилов-Данильян В.И., Розенталь О.М. Оценка соответствия - непростая задача современного рынка. Контроль качества продукции. 2019. № 12. С. 1—5.
6. Ефимов В.В., Исаев Ю.В. Идеи Г. Тагути в системе допусков. Все о качестве. Вып 14. М., НТК "Трек", 2006. С. 2—57.
7. Sullivan L.P. Letters. Quality Progress. 1985. Vol. 18. P. 7—8.
8. Александровская Л.Н., Аронов И.З., Круглов В.И., Кузнецов А.Г. и др. Безопасность и надежность технических систем. Учеб. пособие. М., Университетская книга, 2008. 376 с.
9. ГОСТ 27384-2002 "Вода. Нормы погрешности измерений показателей состава и свойств" (с изменением №1) [Электронный ресурс] URL: http://docs.cntd.ru/document/1200030884 (дата обращения 26.05.2020).
10. ГОСТ 21427.1-83 "Сталь электротехническая холоднокатаная анизотропная тонколистовая. Технические условия" (с Изменениями № 1—5) [Электронный ресурс]. http://docs. cntd.ru/document/1200009103 (дата обращения: 26.05.2020).
Review
For citations:
Danilov-Danilyan V., Rosenthal O. Methodology for Reliable Assessment of the Water Quality. II. General Probabilistic Nature of Water Composition Standardization and Assessment. Ecology and Industry of Russia. 2020;24(9):58-63. (In Russ.) https://doi.org/10.18412/1816-0395-2020-9-58-63