

Experimental Study of Hydraulic and Heat and Mass Transfer Parameters of Inclined-corrugated Contact Elements of Cooling Tower Sprinkler
https://doi.org/10.18412/1816-0395-2020-1-4-8
Abstract
The scheme of cooling tower operation with non-contact evaporative cooling technology is presented. A new design of the cooling tower sprinkler unit consisting of inclined-corrugated contact devices has been developed. The structure contains a system of pipes through which the flow of water moves without contacting the air. Studies have been carried out to determine the hydraulic resistance of inclined-corrugated contact elements with changes in air velocity and irrigation density. Thermal efficiency in a cooling tower with inclined-corrugated contact elements can reach 33 %.
About the Authors
A.V. DmitrievRussian Federation
Dr. Sci. (Eng.), Head of Department
I.N. Madyshev
Russian Federation
Cand. Sci. (Eng.), Senior Research Fellow
O.S. Dmitrieva
Russian Federation
Cand. Sci. (Eng.), Senior Research Fellow
References
1. Inoue H., Fujimura R., Agata K., Ohta H. Molecular characterization of viable legionella spp. in cooling tower water samples by combined use of ethidium monoazide and pcr. Microbes Environ. Environ. 2015. V. 30. P. 108—112.
2. Tsao H.-F., Scheikl U., Herbold C., Indra A., Walochnik J., Horn M. The cooling tower water microbiota: Seasonal dynamics and co-occurrence of bacterial and protest phylotypes. Water Research. 2019. V. 159. P. 464—479.
3. Zaza A., Laadel N.E., Bennouna E.G., Hammami Y.E., Janan M.T. Numerical study of the fouling effect on wet cooling towers designed to CSP plants. Energy Procedia. 2019. V. 157. P. 1230—1240.
4. Llewellyn A.C., Lucas C.E., Roberts S.E., Brown E.W., Nayak B.S., Raphael B.H., Winchell J.M. Distribution of Legionella and bacterial community composition among regionally diverse US cooling towers. PLoS One. 2017. V. 12. P. 0189937.
5. Pereira R.P.A., Peplies J., Höfle M.G., Brettar I. Bacterial community dynamics in a cooling tower with emphasis on pathogenic bacteria and Legionella species using universal and genus-specific deep sequencing. Water Res. 2017. V. 122. P. 363—376.
6. Замалеев М.М., Шарапов В.И. О мероприятиях по предотвращению биологического загрязнения сетевой воды. Новости теплоснабжения. 2015. № 4. С. 43—47.
7. Nhu Nguyen T.M., Ilef D., Jarraud S., Rouil L., Campese C., Che D., Haeghebaert S., Ganiayre F., Marcel F., Etienne J., Desenclos J. A community-wide outbreak of legionnaires disease linked to industrial cooling towers — How far can contaminated aerosols spread? J. Infect. Dis. 2005. V. 193. P. 102—111.
8. Afanasenko V.G., Khafizov F.Sh., Khafizov N.F., Ivanov S.P., Boev E.V. Development of designs for polymeric water traps in cooling towers using centrifugal separation forces. Chemical and Petroleum Engineering. 2007. V. 43. № 11—12. P. 653—656.
9. Merentsov N.A., Lebedev V.N., Golovanchikov A.B., Balashov V.A., Nefed'Eva E.E. Experimental assessment of heat and mass transfer of modular nozzles of cooling towers. IOP Conference Series: Earth and Environmental Science. 2018. V. 115. P. 012017.
10. Boev E.V., Ivanov S.P., Afanasenko V.G., Nikolaev E.A. Polymeric drop-film sprinklers for cooling towers. Chemical and Petroleum Engineering. 2009. V. 45. № 7. P. 454—459.
11. Merentsov N., Persidskiy A., Lebedev V., Prokhorenko N., Golovanchikov A. Heat and mass exchange packing for desinfection of circulation water in electric field. Advances in Intelligent Systems and Computing. 2019. V. 983. P. 547—559.
12. Dmitrieva O.S., Madyshev I.N., Dmitriev A.V. Determination of the Heat and Mass Transfer Efficiency at the Contact Stage of a Jet-Film Facility. Journal of Engineering Physics and Thermophysics. 2017. V. 90. № 3. P. 651—656.
13. Справочник по теплообменникам: В 2-х т. Т. 1. Пер. с англ. под ред. О.Г. Мартыненко и др. М., Энергоатомиздат, 1987. 560 с.
14. Фраас А., Оцисик М. Расчет и конструирование теплообменников. М., Книга по Требованию, 2012. 358 с.
15. Гельфанд Р.Е. Уравнения тепломассообмена и соотношение между коэффициентами отдачи в теории и практике технологических расчетов градирен. Известия Всероссийского научно-исследовательского института гидротехники им. Б.Е. Веденеева. 2006. Т. 245. С. 196—203.
16. Лаптев А.Г., Фарахов М.И., Лаптева Е.А. Сравнительные гидравлические и тепломассообменные характеристики пленочных регулярных насадок в градирнях. Вестник технологического университета. 2017. V. 20. № 18. С. 71—74.
Review
For citations:
Dmitriev A., Madyshev I., Dmitrieva O. Experimental Study of Hydraulic and Heat and Mass Transfer Parameters of Inclined-corrugated Contact Elements of Cooling Tower Sprinkler. Ecology and Industry of Russia. 2020;24(1):4-8. (In Russ.) https://doi.org/10.18412/1816-0395-2020-1-4-8