Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Deactivation of Spent Ion-exchange Resins Contaminated by Cesium and Cobalt Radionuclides

https://doi.org/10.18412/1816-0395-2019-4-20-24

Abstract

Simulation of iron oxide (magnetite and maghemite) and aluminosilicate (sillimanite and cyanite) deposits formed on the surface of spent ionexchange resins in the process of decontamination of liquid radioactive waste contaminated by cesium and cobalt radionuclides has been performed. A method of deep deactivation of spent ion-exchange resins contaminated by aluminosilicate and iron oxide deposits using alkaline and acidic solutions containing Zn-EDTA complexes has been suggested. The method of two-stage concentrating of cesium radionuclides using selective sorption materials (resorcinol-formaldehyde resin and Thermoxid-35 ferrocyanide sorbent) has been improved. The method advantage consists in using a solution containing EDTA complexes for elution of cesium radionuclides from the resorcinol-formaldehyde resin with their transition onto Thermoxid-35. High stability of the resorcinol-formaldehyde resin and Thermoxid-35 in the course of concentrating has been demonstrated. A scheme of deactivation of spent ion-exchange resins, which enables one to decrease the volume of secondary wastes due to utilization of a circulating water supply, has been suggested.

About the Authors

M.S. Palamarchuk
Institute of Chemistry, Far East Branch, Russian Academy of Sciences
Russian Federation
Junior Research Fellow


E.A. Tokar
Institute of Chemistry, Far East Branch, Russian Academy of Sciences
Russian Federation
Junior Research Fellow


M.V. Tutov
Institute of Chemistry, Far East Branch, Russian Academy of Sciences
Russian Federation
Cand. Sci. (Chem.), Research Scientist


A.M. Yegorin
Institute of Chemistry, Far East Branch, Russian Academy of Sciences
Russian Federation
Cand. Sci. (Chem.), Research Scientist


References

1. IAEA. Application of Ion Exchange Processes for Treatment of Radioactive Waste and Management of Spent Ion Exchangers: Technical reports series, no. 408. Vienna: International Atomic Energy Agency, 2002. [Electronic resource] URL: https://wwwpub.iaea.org/MTCD/Publications/PDF/TRS408_scr.pdf (access: 25.02.2019).

2. Wang J., Wan Z. Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry. Prog. Nucl. Energy. 2015. Vol. 78. P. 47—55.

3. Li J., Wang J. Advances in cement solidification technology for waste radioactive ion exchange resins: A review. J. Hazard. Mater. 2006. Vol. 135. № 1. P. 443—448.

4. Heberlein J., Murphy A.B. Thermal plasma waste treatment. J. Phys. Appl. Phys. 2008. Vol. 41. № 5. P. 053001.

5. Korchagin Y.P., Aref’ev E.K., Korchagin E.Y. Improvement of technology for treatment of spent radioactive ion-exchange resins at nuclear power stations. Therm. Eng. 2010. Vol. 57. № 7. P. 593—597.

6. Palamarchuk M. et al. Decontamination of spent ion-exchangers contaminated with cesium radionuclides using resorcinol-formaldehyde resins. J. Hazard. Mater. 2017. Vol. 321. P. 326—334.

7. Паламарчук М.С. и др. Способ дезактивации отработанных ионообменных смол, загрязненных радионуклидами: пат. RU 2573826, дата заявки 27.01.2016, номер заявки 2014138632/07, опубликовано 27.01.2016. Бюл. №3.

8. Egorin A.M. et al. Effect of parameters of thermal treatment of resorcinol-formaldehyde resins on their chemical stability and Cs-137 uptake efficiency. J. Radioanal. Nucl. Chem. 2015. Vol. 304. № 1. P. 281—286.

9. Becker F.L., Rodrнguez D., Schwab M. Magnetic Removal of Cobalt from Waste Water by Ferrite Co-precipitation. Procedia Mater. Sci. 2012. Vol. 1. P. 644—650.

10. Chaturvedi S., Dave P.N. Removal of iron for safe drinking water. Desalination. 2012. Vol. 303. P. 1—11.

11. Gorrepati E.A. et al. Silica Precipitation in Acidic Solutions: Mechanism, pH Effect, and Salt Effect. Langmuir. 2010. Vol. 26. № 13. P. 10467—10474.

12. Ritcey G.M. Silica Fouling in Ion Exchange, Carbon-in-Pulp and Solvent Extraction Circuits. Can. Metall. Q. 1986. Vol. 25. № 1. P. 31—43.

13. Egorin A., Tokar E., Zemskova L. Chitosan-ferrocyanide sorbent for Cs-137 removal from mineralized alkaline media. Radiochimica Acta. 2016. Vol. 104. № 9. P. 657—661.

14. Milyutin V.V. et al. Effect of complexing agents and surfactants on coprecipitation of cesium radionuclides with nickel ferrocyanide. Radiochemistry. 2011. Vol. 50. № 1. P. 67—69.

15. Palamarchuk M. et al. Quantum chemistry and experimental studies of hydrothermal destruction of Co-EDTA complexes. J. Hazard. Mater. 2019. Vol. 363. P. 233—241.


Review

For citations:


Palamarchuk M., Tokar E., Tutov M., Yegorin A. Deactivation of Spent Ion-exchange Resins Contaminated by Cesium and Cobalt Radionuclides. Ecology and Industry of Russia. 2019;23(4):20-24. (In Russ.) https://doi.org/10.18412/1816-0395-2019-4-20-24

Views: 810


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)