

Method and Device of Pyrolytic Processing of Pulp and Paper Industry’ Waste into High-Quality Synthesis Gas
https://doi.org/10.18412/1816-0395-2018-11-4-9
Abstract
Paper presents the results of the experimental investigations of the pulp and paper industry’ wood waste processing method into high-quality synthesis gas. The main characteristics of feedstock (moisture and ash content, elemental composition, higher and lower heating values, volatile matter and fixed carbon content) and synthesis gas (yield, chemical composition, heating value and tar content) in dependence of the processing parameters are described. Processing is carried out by the two-stage pyrolytic conversion method, combining pyrolysis and subsequent high-temperature cracking of volatiles in the charcoal fixed bed. The principal scheme and results of the thermotechnical characteristics calculation of the pilot plant capacity of 300 kg/h of raw material (mechanical mixture of wood chips and bark with a moisture content of 48 %) are presented. The obtained results confirm the high efficiency of the method as applied to the processing of this type of waste.
About the Authors
V.M. ZaitchenkoRussian Federation
Dr. Sci. (Eng.), Head of Department
K.O. Krysanova
Russian Federation
Junior Rasearch Fellow
V.A. Lavrenov
Russian Federation
Cand. Sci. (Eng.), Senior Research Fellow
References
1. Образование отходов производства и потребления по видам экономической деятельности по Российской Федерации: Федеральная служба государственной статистики. [Электронный ресурс]. URL: http://www.gks.ru/free_doc/new_site/oxrana/tabl/oxr_otxod1-okved2.xls (дата обращения 14.09.2018).
2. Rentizelas A., Karellas S., Kakaras E., Tatsio poulos I. Comparative techno-economic analysis of ORC and gasification for bioenergy applications. Energy Conversion and Management. 2009. V. 50(3). P. 674—681.
3. Dahlquist E. Sustainable Energy Developments. V. 4. Technologies for Converting Biomass to Useful Energy. CRC Press, 2013. 497 p.
4. Kumar A., Jones D.D., Hanna M. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies. 2009. № 3. P. 556—581.
5. Singh R.N., Singh S.P., Balwanshi J.B. Tar removal from Producer Gas: A Review. Research Journal of Engineering Sciences. 2014. V. 3(10). P. 16—22.
6. Hofbauer H., Rauch R., Ripfel-Nitsche K. Gas treatment: Report on Gas Cleaning for Synthesis Applications. Vienna University of Technology. 2007. 75 p.
7. Bajus M. Pyrolysis of woody material. Petroleum & Coal. 2010. V. 52(3). P. 207—214.
8. Lavrenov V.A., Larina O.M., Sinelshchikov V.A., Sytchev G.A. Two-stage pyrolytic conversion of different types of biomass into synthesis gas. High Temperature. 2016. V. 54(6). P. 892—898.
9. Heidenreich S., Foscolo P.U. New concepts in biomass gasification. Progress in Energy and Combustion Science. 2015. V. 46. P. 72—95.
10. Gunarathne D. Optimization of the performance of down-draft biomass gasifier installed at National Engineering Research & Development (NERD) Centre of Sri Lanka. Master of Science Thesis KTH School of Industrial Engineering and Management. 2012. 51 p.
11. Mamphweli N.S., Meyer E.L. Evaluation of the conversion efficiency of the 180Nm3/h Johansson Biomass Gasifier™. International journal of energy and environment. 2010. V. 1. № 1. P. 113—120.
12. Quoilina S., Van Den Broekb M., Declayea S., Dewallefa P., Lemorta V. Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renewable and Sustainable Energy Reviews. 2013. V. 22. P. 168—186.
Review
For citations:
Zaitchenko V., Krysanova K., Lavrenov V. Method and Device of Pyrolytic Processing of Pulp and Paper Industry’ Waste into High-Quality Synthesis Gas. Ecology and Industry of Russia. 2018;22(11):4-9. (In Russ.) https://doi.org/10.18412/1816-0395-2018-11-4-9